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Abstract-A new mathematical method is developed to study the shakedown of bar systems
subjected to cycles of loads and temperature allowing for temperature dependence of the yield
stresses. For a parallel bar system constrained to have equal displacements at the ends, the shake
down factor is obtained in an explicit analytical form. The possible inadaptation modes of incremen
tal collapse (structural ratchetting) and alternating plasticity (low cycle fatigue) on the boundary
of the shakedown domain are determined.

I. INTRODUCTION

The investigations of the shakedown of structures under variable temperature fields were
initiated by Prager (1957) who suitably generalized the Melan statical theorem. The gener
alization of the Koiter kinematical theorem was given by Rozenblum (1965). Prager was
also the first to notice that the statement of independence of the load-carrying capacity of
structures from the self-equilibrated residual stresses was no longer valid in the case of
cyclic thermal stresses. A temperature field, apart from generating certain stress and strain
states in a structure, may exert an influence on the mechanical properties of the materials.
For the simplest structures subjected to variable temperature and constant loads, solutions
were obtained and presented in the form of a Bree diagram (Bree, 1967; Mulcahy, 1976).
Gokhfeld and Cherniavski (1980), Ponter and Karadeniz (1985) and Konig (1987) studied
the special mode of perfect incremental collapse of structures subjected to cycles of loads
and temperature, applying the upper bound kinematical theorem.

In this study the difficulty of application of the Koiter kinematical theorem is overcome
to yield a practical form of the shakedown factor for bar systems subjected to cycles of
loads and temperature. The temperature dependence of the yield stress is taken into account
while the weak influence of the temperature on the elastic moduli is neglected. In the
temperature ranges considered, viscous properties are not pronounced so the time indepen
dent framework of the shakedown theory is preserved.

2. APPLICATION OF THE KINEMATICAL THEOREM

Let us consider a system of n bars of constant cross-sections F:, lengths I; and volumes
Vi = F;I; (i = 1, ... ,n) subjected to variable external loads and kinematic constraints in a
changing (homogeneous in each bar) temperature field (J;(t). The bars are generally made
from different materials with the yield stresses:

O'y,«(J) = O'~,[l-9;«(J)] , (1)

where9;«(J) are some functions of temperature, 9;«(J) < 1,9;(0) = 0; O'~. are the yield stresses
at the reference temperature () = O. '

Koiter's inadaptation condition (Koiter, 1963; Rozenblum, 1965; Konig, 1987) for
axially loaded bars in the presence of thermal effects, taking into account (1), could be
given as:

t Also at: Ruhr-Universitat Bochum, Germany.
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where
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6P = iT el?dtI I

o

(2)

(3)

is compatible (i.e. satisfied kinematic constraints), ef (t) is the plastic strain rate; 6f is the
plastic strain increment over a cycle; uHt) is the fictitious elastic stress response of the bars
to external loads and temperature field. The index i under the sign of sum runs from I to
n.

From (2), we determine the shakedown factor k, as

where ef e (3) means that the suprimum is taken over all fields ef satisfying condition (3).
We will not try to give the shakedown factor defined in (4) a practical meaning, particularly
when g;(O) # 0, but the equation k, = I yields the exact shakedown domain boundary in
the space of external loads and temperature and when k, > I the structure will shakedown
and with k, < I it fails.

Plastic strain rate fields ef(t) satisfying (3) could be expressed as

where

6f is compatible while s; is arbitrary.

(5)

(6)

Our purpose is to transform (4) into a more practical form suitable for applications.
Denote:

then from (5) we derive

Denote

iT {s.+ IJo (lAd +AJj2dt = s:, ' ieCp ,

ieCo.

(7)

(8)

U'(' = max U;(t) = U;(tu), L'(' = max L;(t) = L;(td.
/ I t I

For ie Cp we have:

(9)
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Similarly, for iECo,

A·+ IA·I IA-I-A-
e pOI PI - U' , L ' ,O"i ei +gjO"Y, ei - i 2 + i 2 '

Now substituting (5) into (4), taking into account the last formulae, we come to

Let us consider the integral expression in the numerator of (lO)-first for the case
iECp :

rT
[u.IAil+Ai +L.IAil-A]dt ~ U,!,. rT

IAil+Aidt+L'!'. rT
lAd -A dt

Jo '2 '2 ..." Jo 2 'Jo 2

On the other hand, taking Aj = (Sj + 1). o(t- tv) -Sj· o(t- td satisfying (7), (8) we
have: (o(t) is the Dirac function) , ,

rT
[ lA-I + A- IA-I- A.]Jo Ui· '2 ' +Lj· '2 ' dt= Ui·(Sj+l)+Li·Si·

Therefore we conclude

iT [ lA-I +A- IA-I-A-]sup Uj· '2 '+Li• '2 ' dt=Ui·(Si+1)+Li·Sj
A,e(7,8) 0

Similarly, for iECo one obtains

iT [ IAjl +A lAd -Ai]
sup Uj· 2 +Li• 2 dt = Ui· Si+Li· Sj.

A,e(7,8) 0

Thus (l0) becomes

SAS 3O:9-C
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Denote
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(11)

(12)

then (11) could be rewritten as

ks- 1::::: sup sup
s;E(6),iij 5,E( I2),X:;' 0

Denote

{
U,!,+L,!, U'!'+L'!'}W - max max-.-- max~._-

- Co,Cp iECp 2u~,lef I' iECo 2u~,IBil '

and let j be the point where the maximum is reached.
It is easy to see that

L: Vi· U:,,+X· W
iECp

k- I ......
s ~ sup sup 0 P'

ePE(6),ii,X:;'OX+ L: Vi·uyi·leil
I ieep

(13)

(14)

(15)

On the other hand, putting Sf ::::: X, Si::::: 0 (i¥ j) satisfying (12) into (13), taking into
account (14), we deduce

L: Vi· U:,,+X· W
iECp

k; I ~ sup sup 0 P'
ePE(6),ii, X:;, 0 X+ L: Vi· (ly, ·Iei I

I iECp

This inequality is the opposite of (15), therefore the right-hand expression is the exact
value ofk; I. Furthermore the expression after sup monotonously depends on X E [0, + 00),

so the suprimum is attained at X = 0 or X = + 00 :

{
L: Vi· u:"

-l ieep

ks = sup max 0 P'
e;E(6),ii, L: Vi· (ly, ·Iei I

ieep

(16)



where
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(17)

(18)

Equations (16)-(18) are much simpler than the initial formulation of Koiter's theorem
(4) because the time integrals and the plastic strain rate field ef(t) have vanished.

Remember that k. = 1 determines the boundary of the shakedown domain. It is
interesting to notice that two local modes of nonshakedown from (5) are separated in (16)
into the global modes of incremental collapse sf ::;: 0 (17) and alternating plasticity e; :F 0
(18). Therefore on the part ofthe shakedown boundary, where 1 = k. = I> A, we have the
case of structural ratchetting while on the other part where 1 = k. = A > I, the alternating
plasticity mode might be the predominant one (at the same time we should not rule out the
possibility of some mixed mode collapse there).

3. A SYSTEM OF PARALLEL BARS

Let us consider a system consisting of n parallel bars constrained to have equal
displacements at the right ends, while the other ends are fixed (Fig. 1). The system is
subjected to a variable load in a changing temperature field

(19)

Let a;, E; denote the linear thermal expansion coefficient and elastic modulus of i-bar
and suppose 9;(0) = p; ° 0, p; ~ 0 is a material constant.

The kinematic constraint on the strains s; of bars imposes

s;ol; = u, (20)

where u is the horizontal displacement of the right ends of the bars.
The elastic stress response to the external load and temperature field in the i-bar is

deduced from the equilibrium equation of the system and (20) :

2
p

D

Fig. I.
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Because of the independence of the external load from the temperature field in the bars
[see eqn (19)] and linear dependence of the expressions after sup and max in (17) and (18)
on P and ()j in our case, one can calculate (17) and (18) easily:

1= ('LF/1~i)-[· _ ma~ [1'LFj.(Ei.(P+'LEjFjrxA)!
i p-Pu.Pv8j-8jU,8iL i j

(/j • ~EjFj/lj )-rxiEj())1 +~F;/JilT~i()J (21)

A = m~x (2lT~r [ . [Ei. (PU-PL+j~j EjFjrxj· «()u) -()L))! (/j • ~~Fj/lj)

+(1- EiFj! (Ii· ~ EjFj/lj)). Ejrxj«()u, - ()L) + lT~if3i«()U, + ()L) J. (22)

Thus (16) is resolved in an explicit form, which gives the shakedown domain as well
as the possible modes of inadaptation. Various special cases could be considered but we
restrict ourselves to a few illustrative examples.

Example 1: For two bars of the same material and of the same constant cross-section
Fwith the lengths Iand 21; PL= -2Pu/3, Pu > 0, ()\ == ()z == 0; (16), (21), (22) are reduced
to the same result as the one obtained by the static approach [see Konig (1987)] :

and we have the case of alternating plasticity at inadaptation.
Example 2: Two bars of the same material and same length I with the cross-sections

F[ = F, Fz = (f-l)· F(f~ 2); 0 ~ P ~ Pu; 0 ~ ()1 ~ ()u; ()z == O. Elementary calculations
from formulae (21), (22) give us

In the plane of coordinates ()u, Pu (Fig. 2), the shakedown domain is given as the area

Fig. 2.
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inside oacd and on ac (A 2 = 1) we have alternating plasticity while on cd (/2 = 1) we have
incremental collapse. Taking into account the temperature dependence of the yield stress
in this example (P > 0) leads to a reduction of the shakedown domain.

Example 3: Almost the same data as those given in the previous example; the only
change is: the load becomes constant P = P u = const. We have

The shakedown domain is increased (in comparison with that ofexample 2) to domain
oabd (Fig. 2) and on ab (A 3 = 1) we have alternating plasticity while on bd (/3 = 1)
ratchetting.

Example 4: We come back to the general case (21), (22) and suggest that

PL ~ pet) ~ Pu ; (}j(t) == (}ju = const., i = 1, ... , n.

We have:

(PU-PL)Ed1i}
max 0L '

I 2uy' EFjf.; J J J
j

which represents the well-known fact that a self-equilibrated stress field caused by a constant
(in time) temperature field does not affect the shakedown of structures subjected to variable
loads but only if the temperature dependence of the material constants (in this case-the
yield stresses) is disregarded (Pi = 0).
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